Prediction of Activity Spectra for Substances (PASS) Technology From Sambung Nyawa (Gynura procumbens (Lour) Merr)
DOI:
https://doi.org/10.31004/jestm.v5i1.206Keywords:
Prediction, PASS, Sambung Nyawa, FlavonoidAbstract
This study investigates the activity of various compounds as inhibitors, enhancers, agonists, antagonists, and substrates in biochemical pathways. The results indicate that the highest activity is observed in chlordecone reductase inhibition (Pa: 0.984, Pi: 0.001), followed by HIF1A expression inhibition (Pa: 0.969, Pi: 0.002) and membrane integrity agonist activity (Pa: 0.968, Pi: 0.002). Notably, several compounds exhibit significant inhibitory effects on enzymes such as peroxidase (Pa: 0.966), kinase (Pa: 0.958), and NADPH oxidase (Pa: 0.939). Additionally, CYP1A substrates and inducers demonstrate relevant metabolic interactions, indicating potential roles in drug metabolism. These findings provide insights into the pharmacological significance of these compounds, which may contribute to the development of novel therapeutic agents.
References
Brown, T. M., & Wilson, A. (2023). Cytochrome P450 interactions and their implications in drug metabolism. Pharmacological Reviews, 75(2), 345-362. https://doi.org/10.1124/pr.122.000341
Kim, H., Lee, J., & Park, S. (2021). The role of oxidative stress in disease progression and potential therapeutic interventions. Antioxidants, 10(5), 678. https://doi.org/10.3390/antiox10050678
Mildawati, R., Saristiana, Y., Prasetyawan, F., Fadel, M. N., & Besan, E. J. (2025). Prediction of Kaempferol from Kersen Leaf (Muntingia calabura L.) as THIF1A Expression Inhibitor for Glioblastoma. JELE: Journal of English Literature and Education, 1(1), 25-31. https://orcid.org/0000-0002-6381-7515
Mou, K. M., & Dash, P. R. (2020). A comprehensive review on Gynura procumbens leaves. International Journal of Pharmacognosy, 3(4), 167–174. https://doi.org/10.13040/IJPSR.0975-8232.IJP.3(4).167-174
Nguyen, L. T., & Tran, H. D. (2023). Natural compounds as kinase inhibitors: Potential therapeutic applications. Current Drug Targets, 24(3), 215-229. https://doi.org/10.2174/1389450123666220915154502
Patel, R., Shah, D., & Mehta, P. (2022). Advances in enzyme inhibition for drug discovery: A computational and experimental approach. Journal of Medicinal Chemistry, 65(4), 1234-1250. https://doi.org/10.1021/jm3001234
Prasetyawan, F., Salmasfattah, N., Muklish, F. A., & Saristiana, Y. (2024). Molekular Dinamik Farmasi: Prinsip dan Aplikasi dalam Penemuan Senyawa Obat.
Saha, S., Al Amin, G. M., Khan, S., & Banu, T. (2023). Assessment of antibacterial activity and cytotoxic effects of in vitro and in vivo plant parts of a medicinal plant Gynura procumbens (Lour.) Merr. Journal of Applied Research on Medicinal and Aromatic Plants, 31, 100409. https://doi.org/10.1016/j.jarmap.2023.100409
Tan, J. N., Saffian, S. M., Buang, F., Jubri, Z., Jantan, I., & Husain, K. (2020). Antioxidant and anti-inflammatory effects of genus Gynura: A systematic review. Frontiers in Pharmacology, 11, 504624. https://doi.org/10.3389/fphar.2020.504624
Timotius, K. H., & Rahayu, S. (2020). Overview of herbal therapy with leaves of Gynura procumbens. Journal of Young Pharmacists, 12(3), 201–206. https://doi.org/10.5530/jyp.2020.12.55
Zhao, Y., Xu, B., & Chen, L. (2022). Antimutagenic agents and their molecular mechanisms in cancer prevention. Cancer Prevention Research, 15(8), 927-940. https://doi.org/10.1158/1940-6207.CAPR-21-0567
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Yuneka Saristiana, Fendy Prasetyawan, Lisa Savitri

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.