Application of TOPSIS and K-Means Clustering Methods in Recommendations and Analysis of Study Program Interests for New Students

Authors

  • Hidayati Rusnedy Teknik Informatika, Fakultas Teknik,Universitas Pahlawan Tuanku Tambusai
  • Kasini Teknik Informatika, Fakultas Teknik, Universitas Pahlawan Tuanku Tambusai
  • Lailatul Syifa Tanjung Teknik Industri, Fakultas Teknik, Universitas Pahlawan Tuanku Tambusai
  • Yesi Yusmita Teknik Industri, Fakultas Teknik, Universitas Pahlawan Tuanku Tambusai

DOI:

https://doi.org/10.31004/jestm.v5i1.251

Keywords:

Decision Support System, Topsis, Clustering, K - Means, Pahlawan Tuanku Tambusai University

Abstract

The selection of a study program is one of the crucial initial decisions for prospective students when entering college. This decision is ideally based on a good understanding of their interests, talents, and abilities so that prospective students can study optimally and in accordance with their potential. Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is a multi-criteria decision-making method where the best alternative has the longest distance from the negative ideal solution and has the shortest distance from the positive ideal solution. The selection of these criteria and alternatives aims to produce relevant and accurate recommendations in helping prospective students determine the choice of study program that best suits their potential and preferences. The results of these recommendations are then further analyzed to group the results of the recommendations based on the category of interest. The K-Means Clustering method using the K-Means method with the results of C1 with 9 Respondentsts of less interested study programs, C2 with 25 Respondentsts of moderately interested study programs, and C3 with 21 Respondentsts of highly interested study programs

References

Chakraborty, S. (2022). TOPSIS and Modified TOPSIS: A comparative analysis. Decision Analytics Journal, 2(September 2021), 100021.

Hts, D. I. G., Desi, E., Aliyah, S., Nasution, F. P., Indriani, U., & Edi, F. (2024). Decision Support System Using the TOPSIS Method in New Teacher Selection. Sinkron, 8(3), 1706–1714. https://doi.org/10.33395/sinkron.v8i3.13751

Kasini, Rusnedy, H., Tanjung, L. S., & Munti, N. Y. S. (2025). Penerapan algoritma k-means untuk pengelompokan data mahasiswa baru Program Studi Teknik Informatika di Universitas Pahlawan Tuanku Tambusai. JUTIN : Jurnal Teknik Industri Terintegrasi, 8(1).

Krohling, R. A., & Pacheco, A. G. C. (2015). A-TOPSIS - An approach based on TOPSIS for ranking evolutionary algorithms. Procedia Computer Science, 55(Itqm), 308–317. https://doi.org/10.1016/j.procs.2015.07.054

Miraftabzadeh, S. M., Colombo, C. G., Longo, M., & Foiadelli, F. (2023). K-Means and Alternative Clustering Methods in Modern Power Systems. IEEE Access, 11(September), 119596–119633. https://doi.org/10.1109/ACCESS.2023.3327640

Nie, F., Li, Z., Wang, R., & Li, X. (2023). An Effective and Efficient Algorithm for K-Means Clustering With New Formulation. IEEE Transactions on Knowledge and Data Engineering, 35(4), 3433–3443. https://doi.org/10.1109/TKDE.2022.3155450

Okfalisa, O., Rusnedy, H., Iswavigra, D. U., Pranggono, B., Haerani, E. H., & Saktioto, S. (2020). Decision Support System for Smartphone Recommendation: the Comparison of Fuzzy Ahp and Fuzzy Anp in Multi-Attribute Decision Making. Sinergi, 25(1),101. https://doi.org/10.22441/sinergi.2021.1.013

Okfalisa, Siburian, R., Vitriani, Y., Rusnedy, H., Saktioto, & Yola, M. (2022). Job Training Recommendation System: Integrated Fuzzy AHP and TOPSIS Approach BT - Advances

on Intelligent Informatics and Computing (F. Saeed, F. Mohammed, & F. Ghaleb (eds.); pp. 84–94). Springer International Publishing.

Radulescu, C. Z., Radulescu, M., & Boncea, R. (2024). A Linear Trade-off Group TOPSIS method with application for Internet of Things devices ranking. Procedia Computer Science, 242, 528–535. https://doi.org/10.1016/j.procs.2024.08.099

Renatalia, Y., Asfi, M., & Fahrudin, R. (2020). Sistem Pendukung Keputusan Pemilihan Program Studi Menggunakan Metode Profil Matching. JURNAL DIGIT, 10(2), 148–160.

Santoso, N. Y. (2025). Analisis Perbandingan K- Nearest Neighbors dan Naive Bayes Untuk Rekomendasi Pilihan Program Studi Bagi Mahasiswa. Idealis: Indonesia Journal Information System, 8(1), 117–126.

Sari, D. R., Windarto, A. P., Hartama, D., & Solikhun, S. (2018). Decision Support System for Thesis Graduation Recommendation Using AHP-TOPSIS Method. Jurnal Teknologi Dan Sistem Komputer, 6(1), 1–6. https://doi.org/10.14710/jtsiskom.6.1.2018.1-6

Wang, S., Li, M., Hu, N., Zhu, E., Hu, J., Liu, X., & Yin, J. (2019). K-Means Clustering With Incomplete Data. IEEE Access, 7, 69162–69171. https://doi.org/10.1109/ACCESS.2019.2910287

Downloads

Published

2025-03-31

How to Cite

Rusnedy, H., Kasini, Tanjung, L. S., & Yusmita, Y. (2025). Application of TOPSIS and K-Means Clustering Methods in Recommendations and Analysis of Study Program Interests for New Students. Journal of Engineering Science and Technology Management (JES-TM), 5(1), 131–136. https://doi.org/10.31004/jestm.v5i1.251

Issue

Section

Articles

Most read articles by the same author(s)